
Phoenix: An Open-Source, Reproducible and
Interpretable Mahjong Agent

Jun Lin
Computer Science Department, Viterbi

University of Southern California
Los Angeles, USA

junlin@usc.edu

Yu Xing
Computer Science Department, Viterbi

University of Southern California
Los Angeles, USA

xingy@usc.edu

Jingwen Sun
Computer Science Department, Viterbi

University of Southern California
Los Angeles, USA
sunjingw@usc.edu

Bingling Huang
Computer Science Department, Viterbi

University of Southern California
Los Angeles, USA
binglinh@usc.edu

Aiqi Liu
Computer Science Department, Viterbi

University of Southern California
Los Angeles, USA

aiqiliu@usc.edu

Na Li
Computer Science Department, Viterbi

University of Southern California
Los Angeles, USA
nli10945@usc.edu

Jiabao He
Computer Science Department, Viterbi

University of Southern California
Los Angeles, USA
jiabaohe@usc.edu

Chen Cui
Computer Science Department, Viterbi

University of Southern California
Los Angeles, USA

cuichen@usc.edu

Abstract—Mahjong is the multi-round tile based multiplayer
game with imperfect-information. It has more complex scoring
rules than Go and AI has been shown to achieved great success
in the field of perfect-information games. To tackle the issue
of imperfect information, We adapt the fundamental idea from
Suphx [1] by designing several supervised models with some
custom feature engineering as the foundation and later using
reinforcement learning technique such as proximal policy opti-
mization [6] with distribute Ray framework1 to further improve.
At the end, we achieved 57% categorical accuracy on discard
model and 80%, 84%, 95%, 95% for Chi, Pon, Kan, and Riichi
model respectively.

Index Terms—Supervised Learning, Reinforcement Learning,
Distribute training

I. INTRODUCTION

Riichi Mahjong2 is a board game with four players and is
one of the most popular mahjong variants worldwide. It is
usually played with 136 tiles. There are 34 different kinds of
tiles, with four of each kind. All 34 kinds could be divided
into tiles suits of pin (circles), so (bamboo), wan (characters)
and unranked honor tiles.

At the beginning of a typical game, each player has a
randomized initialized hand consist of 13 private hands. The
other tiles are shuffled as the wall (piles). In each round, every
player draws a tile from the wall and then discard a tile from
his hand. Besides, a player can make a meld (open group)
by calling another player’s discard for melds. A typical meld

1Ray is a simple, universal API for building distributed applications.
2Riichi Mahjong, En.wikipedia.org

could be three or four same tiles or three continuous tiles. Once
a player has collected four melds and a pair, he could declared
his winning in this round and end this round. Informally, we
could describe a winning hand as x * (AAA) + y * (ABC) +
DD while x + y = 4, where AAA and ABC represents melds
and DD represents the pair.

The goal of project Phoenix is to produce an open-source
and interpretable Mahjong Agent which could be used to
populate Riichi Mahjong as well as improving people’s level
in Mahjong.

II. RELATED WORK

A. Mahjong AI

Early Mahjong AI work are mainly focus on using statistic
models such as Markov Chain [4] or Monte Carlo Simula-
tion [5]. Recently more and more deep models are utilized
in modeling the decision model in Mahjong. Starting from
combining deep models with rule-based models to completely
deep learning based [2].

Microsoft Research Asia has recently developed a Mahjong
AI named Suphx which beat 99.9 percent human players in
Tenhou platform [1]. The biggest improvement comparing
to previous models are that Microsoft brings Reinforcement
Learning, oracle guiding and global reward predictor into
modeling. Global reward predictor trains a predictor to predict
the final reward of a game based on the information of the
current and previous rounds. Oracle guiding introduces an
oracle agent that can see the perfect information including the

https://docs.ray.io/en/latest/index.html
https://en.wikipedia.org/wiki/JapaneseMahjong

private tiles of other players and the wall tiles then gradually
remove the information.

Microsoft Research Asia evaluates Suphx on Tenhou, which
is a web based mahjong platform in Japan with a complete
ranking system and over 350,000 users. It shows that Suphx
has beaten most of human players and reaches the highest 10
dan.

B. Reinforcement Learning

The idea of learning from interacting with the environ-
ment can be traced to infant plays [1]. Such interactions
may become a source of knowledge that can be used and
applied to conduct competitive or exploratory tasks.Learning
from interactions is a fundamental idea underlying nearly all
theories of learning and intelligence. Reinforcement Learning,
which is one of them, focuses on goal-oriented learning from
interactions than other approaches [7].

Some challenges arose in reinforcement learning that are
not in other types of learning methods. The first one is
the trade-off between exploration and exploitation [7]. The
agent has to exploit and explore in the learning process but
they may lead to different influences on rewards. Exploitation
means taking action as what has already been experienced.
In contrast, exploration means taking actions that were not
selected before. The challenge is that neither exploration or
exploitation can be pursued exclusively without failing at the
task [7]. Even though this problem has been intensively studied
by mathematicians for a long time, it still remains unresolved
yet [7]. Another challenge of reinforcement learning is that it
explicitly considers the whole picture of the task for a goal-
oriented agent interacting with an uncertain environment [7].
The dilemma is that it contrasts many approaches that consider
dividing a big problem into several sub-problems.

Overall speaking, reinforcement learning starts with interac-
tive and goal-seeking learning agents that have explicit goals
and have the ability to perceive the environment. After agents
taking actions, the environment is influenced and agents may
keep perceiving the environment.

C. Bakuuchi

Bakuuchi is another player who performs Monte Carlo sim-
ulation [4].The probability of Bakuuchi has higher accuracy,
the equation. Evaluate each simulation and the simulation
strategy learned from the game record at the end of the hand.
In an early study [4], they reported that the point dependence
on policy was inappropriate and only reached an intermediate
level. It is worth noting that Bakuuchi has reached an advanced
level. As far as we know, no tree has been found to find better
decisions.

D. NAGA

Mahjong is a difficult game because you can’t see your
opponent’s hand and don’t know which card you will draw
next. Mahjong also requires a long-term strategy, and it is
difficult to predict the state of the next round. Traditional
Mahjong AI deals with these problems based on the expected

final ranking and Monte Carlo method, while NAGA solves
these problems through deep learning[5].

Naga uses confidence to learn each CNN[5], and if you are
not confident in the distribution of predicted behavior, you
can refer to the correct answer by penalizing it. Therefore, the
phase where the confidence is low is that NAGA can not have
confidence in the tile selection, that is, it is a lost phase.

Naga enters the table information and calculates the slope
that can expand the selection range[5], so that the produced
features can be visualized. Conversely, you can also visualize
features that will no longer make a selection by calculating
the slope of the selection attenuation. In the deepest layer of
the neural network, it seems that judgments are made with
complex granularity.

III. DATASET

A. Data Sources

Thanks to the well designed logging system provided by
Tenhou platform, each game is logged in the XML format
(Extensible markup language). Player’s actions and table in-
formation are recorded as XML tags. In order to bootstrap
the process of supervised learning training, we scrape the logs
bundle from the Tenhou platform server. Each file is bundled
together by year since 2009. Although earlier logs from 2005
exist, but the highest ranking game logs are available only
after 2009. Since we are targeting for high quality games, the
low ranking games and three-player game logs are filtered.
Here are statistics of our datasets. For some unknown reason
the logs in 2020 are missing in the Tenhou platform. We will
skip them for now.

TABLE I: Size of Raw Data

2009 2010 2011 2012
51k 40k 464k 85k
2013 2014 2015 2016
71k 48k 46k 44k
2017 2018 2019 2021
30k 36k 46k 1332

B. Data Preprocessing

1) Data for Supervised Learning: In order to generate
training data for supervised learning, we need to take a
snapshot of the table before each actions. Since raw data is
a log file which means it increases incrementally. We have to
simulate the changes according to the log and take snapshots
to our table.

Firstly, we will use the log parser to resolve data from
logs, and extract features from it. We extracted features for
the Discard Model, Riichi Model, Chi Model, Pon Model,
and Kan Model. In this step, we generate a 2d vector for each
state as the input of a supervised learning neural network. The
detailed format will be shown as below. In this part, we also
made an effort to remove three-player log, and fixed logs with
duplicate nodes. Table II shows the distributions of classes that
each action performed after the preprocessing.

TABLE II: Classes Distribution

Chi Pon Kan Riichi

No 15,666,962
(0.88)

3,155,855
(0.97)

1,117,335
(0.84)

2,697,554
(0.59)

Yes 1,972,332
(0.12)

92,890
(0.03)

202,184
(0.16)

1,843,236
(0.41)

Total 17,639,294 3,248,745 1,319,519 4,540,790

2) Data for Real-time Gaming: Features are needed as an
input for trained models in real-time gaming. So generating
exactly the same features as the training data from tenhou
bot interfaces, which is an access to play riichi mahjong on
tenhou.net server, is necessary.

C. Data Format

1) States Format: We have different data formats in dif-
ferent models. The following are the data formats for the
Discard Model and Riichi Chi Pon Kan Model. Both of them
contains the metadata of the current round, and player’s tile
details, and enemies tile details. All of these factors may affect
the player’s decision.

Fig. 1: Data Format for Discard Model

2) Extracted Feature Format: General feature is a (D, 34)
vector include information such as player tiles(12,34), enemies
tiles(36,34), dora(5,34), current scores(4,34), and other basic
board information(5,34) like dealer and wind. Manual crafted
features will also be concatenated. Each model has its own
individual feature, for example, tile to Chi is an individual
feature important to Chi feature generator.Thus the final fea-
ture will be individual feature concatenate to general feature.

IV. METHODOLOGIES

A. Base Model

Our supervised models take the ideas from the well known
DenseNet [3] architecture. DenseNet embrace the idea of
short-cut connection from ResNet and connects each layer to
every other layer in a feed-forward fashion. There are several

Fig. 2: Data Format for Riichi/Chi/Pon/Kan Model

advantage of using DenseNet architecture, it has a significantly
small parameter size and strengthened feature propagation.
The implementation of DenseNet [3] consist four identical
dense blocks. Each block consists of one convolutional layer
with kernel size 1 x 1 and another convolutional layer with
3x3 kernel size. The difference between each block is the
number of such pairs in the block. In our case, we used in
total 201 layers. First block has the 6 such pairs, the second
block with 12 pairs, the third block has 48 pairs, and the last
block with 32 pairs. After each block, there are one more 1x1
convolutional layer and one 2x2 average pooling layer. Note
that instead of performing the skip connection in ResNet, every
layer in the block directly connects to all subsequent layers.
At the end, we added 2 more dense layers to smooth down
the distribution and softmax activation function to distribute
the probabilities to 34 classes for Discard model and binary
classes for Chi, Pon, Kan, and Riichi model. Since discard and
other models has different number of classes and they are also
evaluate differently. In RCPK models, binary cross entropy is
employed and start with 1e-4 learning rate and slowly decay
after few epoch. Discard also use the same optimizer but
with categorical cross entropy for better evaluation on the
performance. Besides of common metric such as accuracy and
are under the curve (AUC), we also plot out the confusion
matrix for better understand of our RCPK model prediction.

B. Reinforcement Learning in Mahjong

The complexity of mahjong is two fold. The first complexity
is that we take different strategies under different circum-
stances. Most of the time the following factors are considered.
Firstly, the level of your enemies. If in a low level room, you
could defend less and become more aggressive. Secondly, our

Fig. 3: Discard, Chi, Pon, Kan, and Riichi Model

current rank in this game. If we are currently rank 1, we tend
to be conservative to avoid dealing in. Otherwise, we tend to
play aggressively to gain more scores. Thirdly, the quality of
initial hand. With low-quality initial hand, we will have more
difficulty reaching tempai. In this process, we are prone to
dealing in leading worse status.

The second complexity is that how we invade or defend.
Mahjong is an imperfect information game and the random-
ness bring more challenge for players to make a plan to invade
or defend. A common strategy is to determine which tile is
safe based on others’ discarded tiles. There are many mahjong
research about the correlation between safe tile and others’
discarded tiles.

Here we mainly take the methods from Suphx. To solve the
challenge of imperfect information, oracle guiding is applied.
Firstly a strong agent is trained by providing all information,
both visible and invisible. This agent will perform really
well because he could see others’ private tiles and take the
best strategy. Afterwards we gradually decay the invisible
information in the training. We will end up with an agent
with visible information only. We could say that the visible
information are now utilized appropriately in their knowledge
structure.

As for the challenge of strategies, we take the same global
reward predictor as Suphx. The advantages of global reward
predictor is two fold. Firstly, it could help us distribute the
final rewards into each round in a game so that we could get
more precise and instant reward after a round. Secondly, it
should be mentioned that losing scores doesn’t always mean
negative signals. To keep our advantageous state, if we start
with a low-quality hand, we should decidedly defend to avoid
lose too many scores. Low quality initial hand means high
risk and low gains if blindly try to win. The global reward
predictor will impose positive signals to ”reasonable losing”
and big penalty to ”obtrusive losing”.

An asynchronous and distributed learning method is applied.
The RL pipeline could be divided into client side and server
side. The client side integrates our agents into Tenhou platform
and collect state, actions and rewards into replay buffer. The
parameter servers keep training latest deep models using recent
logs in replay buffer using policy gradient. The client would
fetch latest parameters from server side after a certain period.

After the game information is saved in the replay buffer, it
can be referred to by other parts when needed. As for the
reinforcement learning algorithm, it needs to know current
state, action, reward and current parameters as input and
updates policy by training the neural network’s parameters
separately for five models which are riichi, chi, peng, kong

Fig. 4: Reinforcement Learning Structure in Mahjong Training

and discard. By updating the new neural network, the system
can select action with the biggest probability at current state.
And the updated policy and action will be returned to the
Mahjong environment. That is how it works in the system.

Fig. 5: Online Training Environment

When we consider choosing RL algorithms, there are two
constraints. The first point is, compared to common games
which give instant reward for each step, mahjong is more
similar to board game Go. You could only get feedback after
completing each round. The second point is that, in mahjong it
is hard to build a network to estimate the Q-value of the current
board situation. Unlike Go, the advantage and disadvantage
didn’t show on board. Player should decide on attack or defend
based on the quality of his own hands as well as deduce what
would be a dangerous tile based on others’ discarded tiles.
Based on these two considerations, we choose policy gradient
as our RL algorithms. And the objective function is shown as
below [1].

∆θJ(πθ) =

E
s,a∼πθ′

[
πθ(s, a)

πθ′(s, a)
∆θlogπθ(a|s)Aπθ (s, a)s

]
+ α∆θH(πθ)

(1)

As mentioned before, we can not get instant feedback in each
timestep. We will use processed round results (will mention
below) as Advantage.

We could get round scores after each round. However, as
we mentioned above, the gains and loss of score in each round
didn’t absolutely mean good or bad feedback for your policy.
Take a simple example, you start with a bad initial hand so
you take a conservative method and avoid to lose more scores
by ’Ron’. Finally you lose a little points because others made
a ’Tsumo’. In another round, you have a good initial hand
and take an aggressive method. You won a lot of scores in
this round and finally got rank 1. In this example, we should
give positive signals for both rounds. That’s why we need
the global reward predictor. In our system, the global reward
predictor Φ is a recurrent neural network and is trained by
minimizing the following mean square error [1]:

min
1

N

N∑
i=1

1

Ki

ki∑
j=1

(Φ(x1i , . . . , x
j
i)−Ri)

2 (2)

Where N is the number of games in the training data, Riis
the final game reward of the i-th game, Kiis the number of
rounds in the i-th game. xki the feature vector of the k-th round
in the i-th game, including the initial score of current round
the gains of this round and some other round features such as
riichi bets. In the online pipeline, the global reward predictor
will be given a history round feature after each round and will
give the reward for current round. The reward will be used in
advantage computation and stored in reply buffer.

Fig. 6: Global Reward Predictor Work Flow

C. Distributed Reinforcement Learning

We used the Ray framework developed by RISE Lib to build
our distributed training pipeline. Here are five components.

• Replay Buffer (distributed): Store experiences.

Fig. 7: Distributed Reinforcement Learning Pipeline

• Parameter Server (distributed): Store most updated model
weights.

• Actor (distributed): Self-play or play with real users,
responsible for collecting experiences.

• Learner (centralized): Pull samples from cache, train and
push weights to cache.

• Cache (centralized): Built inside Learner, use multipro-
cessing to communicate with replay buffer and parame-
ter server. There are two multiprocessing queues inside
cache. The first is to store samples, the second is to store
model weights.

V. EXPERIMENTS

A. Google Cloud Platform

1) Preprocessing using Dataflow: Processing such a huge
dataset locally is infeasible and impractical. Since Google
Cloud Platform(GCP) offers $300 free credits for all new
users, we have decided to use GCP to do preprocessing and
training. In order to work on these dataset more efficiently, we
move all our dataset from local storage to the google cloud
storage bucket, this will significantly speed up the disk I/O
and lower the network latency for other GCP services.

Utilizing the preprocessing logic from the III-B, we employ
an Apache Beam pipeline to speedup and scale for processing
our dataset. Apache beam is a unified programming model to
define and execute data processing pipelines, including extract,
transform, and load(ETL), batch and stream (continuous)
processing. Beam can easily do distributed processing on the
fly and the GCP dataflow services use Apache Beam as the
main backbone.

In the preprocessing stage, the input of the pipeline is
directly sourced from the google storage bucket. Logic in the
pipeline is defined by one unit, meaning that every operation
logic is done by one unit. Only one row of data is processed
at a time. This is for the purpose of multithreading and multi
workers distribute processing. Since each row in a csv file is a
game log, we read the csv files line by line. In the next step of
the pipeline, we convert the raw text to csv row data and only
the log column is extracted. The extracted column consists of
only one log in the raw XML format. We need to parse the
XML format to an easy to manage format. This is done in the
III-B. After getting the result from III-B in dictionary form,
we transform it to the shape of (D,34,1), the first dimension is

determined by different features in different models. Filtering
out some of the invalid data points, we split it into train and
validation datasets for later training. These datasets are saved
into the TFRecord files in the bucket, we will use them to
load our dataset into Tensorflow training. At the point, we
have concluded the process of preprocessing, all the relevant
file are generated and ready to begin the training process.

2) Distribute training using Mirrored Strategy: Training on
a single GPU is slow and impractical in bigdata era. With
the growth of cloud services providers like Amazon web
servises(AWS) and Google Cloud Platform (GCP), distribute
training is not longer the headache for researchers. Especially,
with the help of higher level machine learning frameworks like
Keras and Tensorflow, researchers can deploy multi-GPUs or
even multi worker with multi-GPUs with ease. In our setting,
we expedite the process by utilized the Mirrored Strategy
with the Tensorflow Api. Mirrored Strategy is a synchronous
training strategy that works in a single machine with multiple
GPUs. In GCP, we are allowed to attach some amount of GPUs
to a server. This is some fast way to train with multiple GPUs
without any overhead. The main idea of Mirrored Strategy is
to make a copy of the model variable to all the processors.
During the training, it will combine the gradients all together
and apply changes to all copies of processors. There are some
other kinds of strategies. We currently adopt Mirrored Strategy
due to the simple usage and the more stable compare to others.
Since most of our training code is written in Keras and Keras
is the higher level API for tensorflow, we can easily configure
the strategy on our existing code without much modification.
All we need to do is to add the appropriate scope to our model
and it will do the rest for us. In our experiment, we used a
master server with n1-highmem-8 machine which has 8 virtual
CPU (vCPU) and about 7 GB memory per vCPU. We attached
4 Nvidia T4 GPUs to our master server for our training task.
With the help of multi GPUs, we are able to quickly train
our RCPK model in few hours. These models have smaller
datasets compared to discard models due to the nature of these
actions. On the other hand, train the discard model is much
slower compared to RCPK models and more difficult to get
great performance out of the box.

B. Training results with Supervised models

As the foundation of our mahjong system, we want these
supervised models to have some comparable level of skills
to human players, so we can continue to improve using
the reinforcement learning techniques later. In Fig 8, discard
model achieved with about 60% categorical accuracy for this
task. Although the result seem to be low, but in the example
run, the performance of discard model is notable against
human player. Compare to the previous work from Suphex
[1], we are achieving some comparable results without any
tuning. For the Kan and Pon models in Fig 8, 9, we slightly
outperform the baseline set by the Suphex [1]. There are still
some room for improvement with parameter tuning due to the
time constraint, we will skip it for now.

Fig. 8: Discard model accuracy

Fig. 9: Chi, Pon, Kan, and Riichi model accuracy

C. Tenhou Platform Integration

One important aspect of our project is the ability to play
mahjong in real-time with human players. In the other hand,
the reinforcement learning needs an environment for agents
to play around as well. In our current setup, agents are allow
to play with builtin computer player, with other three human
players, or form an table privately and play. We utilized the
the builtin computer players in our debugging phase. Once
everything work in the environment with builtin computer
players, We release our agent to the public available table in
tenhou to evaluate the performance against human player. In

Fig. 10: Example run aginst three human players

the reinforcement learning phase, we deploy multiple agents
with a local game manager to do the self-play. With the
help of distribute framework, the number of worker can scale
horizontally. We have the infrastructure for all three type of
setup. During the game, our agent collect features from the
known information in the table as the game progresses and
transforms them into the single feature row in the format of
the training dataset. This feature is used by models to make
predictions. In discard model, the prediction will give us the
distributions of probabilities of each class. Argmax applied to
find out which one has the highest probability. The results
are mapped to the corresponding unique tiles. We send a
web-socket message from tenhou client to server and update
the states accordingly. The other models have the similar
mechanism , the difference is that we need to first manual
check the condition for valid action. In other words, some
rules need to be checked before we ask the model to make
an action. Models only make predictions when they meet all
the requirements. Fig.10 shown as an example run3 against
three human players. The red underline phx527 is our agent
bot. Our current supervised models achieved 2nd place in this
game. Agent plays relatively defensive against human players.
It doesn’t throw out any existing meld in hands and cautiously
discard the tile that can’t be used against self.

D. Ranking

We evaluate our model on tenhou platform with about 50
games against other human player, our model is ranking in the
4 kyu. This ranking is purely for the supervised model. More
games are needed in order to stabilize the ranking.

VI. CONCLUSION

There are still some room for improvement for our model
especially the reinforcement learning part. Due to the re-
sources and time constraint, we are unable to finished the
reinforcement learning training on time. We already setup
our infrastructure of the distributed training using Ray. The
performance of model should be more promising with the
proximal policy optimization. This project is heavily focused
on the engineering side, we spend most of time to setup
the infrastructures of our supervised pipeline and distributed
reinforcement learning framework. All the source code are
available publicly for the researcher interested in this field to
bootstrap the process of AI mahjong playing.

ACKNOWLEDGMENT

We would like to express our sincere gratitude to our pro-
fessor Dr. Michael Zyda for his valuable advice and guidance
on our project. We also want to thank teach assistants team
for their hard working on making everything happen.

3Example replay log

REFERENCES

[1] Ege Eren and A. Nihat Berker. Metastable reverse-phase droplets
within ordered phases: Renormalization-group calculation of field and
temperature dependence of limiting size. Physical Review E, 101(4), Apr
2020.

[2] Shiqi Gao, Fuminori Okuya, Yoshihiro Kawahara, and Yoshimasa Tsu-
ruoka. Building a computer mahjong player via deep convolutional neural
networks, 2019.

[3] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q.
Weinberger. Densely connected convolutional networks, 2018.

[4] Moyuru Kurita and Kunihito Hoki. Method for constructing artificial
intelligence player with abstraction to markov decision processes in
multiplayer game of mahjong, 2019.

[5] N. Mizukami and Y. Tsuruoka. Building a computer mahjong player
based on monte carlo simulation and opponent models. In 2015 IEEE
Conference on Computational Intelligence and Games (CIG), pages 275–
283, 2015.

[6] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal policy optimization algorithms, 2017.

[7] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018.

http://tenhou.net/0/?log=2021031703gm-0001-0000-12b0e05d&tw=2

	Introduction
	Related Work
	Mahjong AI
	Reinforcement Learning
	Bakuuchi
	NAGA

	Dataset
	Data Sources
	Data Preprocessing
	Data for Supervised Learning
	Data for Real-time Gaming

	Data Format
	States Format
	Extracted Feature Format

	Methodologies
	Base Model
	Reinforcement Learning in Mahjong
	Distributed Reinforcement Learning

	Experiments
	Google Cloud Platform
	Preprocessing using Dataflow
	Distribute training using Mirrored Strategy

	Training results with Supervised models
	Tenhou Platform Integration
	Ranking

	Conclusion
	References

