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1. Introduction
Phoenix is an open-source Mahjong Agent which is used to play Riichi Mahjong
(Japanese Mahjong) game. Phoenix would be based on Suphx which was developed by
Microsoft Research Asia. “Phoenix '' is a Mahjong term in Riichi Mahjong used to name
people who get level 10(less than 20 people).

1.1 Goal of Our Project
The goal of our project--Phoenix is to produce an open-source and interpretable Mahjong
Agent which could be used to populate Riichi Mahjong and improve people’s level in
Mahjong. Besides, if possible, we would try to promote the performance and level of
Phoenix.

1.2 Overview of Mahjong
Riichi Mahjong is a tile based game with four players and is one of the most popular
mahjong variants worldwide. It is usually played with 136 tiles. There are 34 different
kinds of tiles, with four of each kind. there are three suits of
tiles, pin (circles), so (bamboo) and wan (characters), and unranked honor tiles [1] [2]:

● Pin

● So

● Wan

● Wind tiles

● Dragon tiles

At the beginning, every player has 13 private tiles. The other tiles are shuffled as the wall.
In every round, every player would draw a tile from the wall and discard a tile. Players
can make a meld (open group) by calling for another player's discard. Generally, a
winning hand consists of four melds and a pair like below.



Melds in mahjong are groups of tiles within the player's hand, consisting of either a Pong
(three identical tiles), a Kong (four identical tiles), a Chow (three Simple tiles all of the
same suit, in numerical sequence), or Eyes (two identical tiles needed in a winning hand).

● Pongs are a set of three identical tiles.

● Kong is a complete set of four identical tiles.

● Chow is a meld of three suited tiles in sequence.

● Eyes (also known as a pair) are two identical tiles which are an essential part of a
legal winning hand.



Anyone who declares a winning hand wins the round. Different winning hands get
different scores. The player who gets the highest accumulated scores in the end wins the
game.

1.3 Related Research

1.3.1 Mahjong AI
Microsoft Research Asia has developed a Mahjong AI named Suphx [3]. Suphx is based
on deep reinforcement learning, global reward prediction, oracle guiding, and run-time
policy adaptation.

“Global reward prediction trains a predictor to predict the final reward of a game based
on the information of the current and previous rounds.
Oracle guiding introduces an oracle agent that can see the perfect infor- mation including
the private tiles of other players and the wall tiles.
As the complex playing rules of Mahjong lead to an irregular game tree and prevent the
application of Monte-Carlo tree search techniques, we introduce parametric Monte-Carlo
policy adaptation (pMCPA) to improve the run-time performance of our agent.” [3]

Microsoft Research Asia evaluates Suphx on Tenhou, which is a web based mahjong
platform in Japan with a complete ranking system and over 350,000 users. It shows that
Suphx beats 99.9 percent of human players and reaches 10 dan.

1.3.2 Reinforcement Learning
In nature, the idea that learning from interacting with the environment is common like
infant plays [1]. Such interactions may become a source of knowledge that can be used
and applied to conduct competitive or exploratory tasks. And learning from interaction is
a foundational idea underlying nearly all theories of learning and intelligence. In the
science field, some methods take advantage of this idea to solve some complex problems
and reinforcement learning is a popular one among them. It focuses on goal-oriented
learning from interaction than other approaches [4].

Reinforcement learning is different from supervised learning and unsupervised learning
although they all belong to the machine learning field. Supervised learning is learning
from a training set of examples with labels provided by a knowledgeable external
supervisor [4] and unsupervised learning is learning a latent pattern from a bunch of
unlabeled data.



Some challenges arose in reinforcement learning that are not in other types of learning
methods. The first one is the trade-off between exploration and exploitation [4]. The
agent has to exploit and explore in the learning process but they may lead to different
influences on rewards. Exploitation means taking action as what has already been
experienced. In contrast, exploration means taking actions that were not selected before.
The challenge is that neither exploration or exploitation can be pursued exclusively
without failing at the task [4]. Even though this problem has been intensively studied by
mathematicians for a long time, it still remains unresolved yet [4]. Another challenge of
reinforcement learning is that it explicitly considers the whole picture of the task for a
goal-oriented agent interacting with an uncertain environment [4]. The dilemma is that it
contrasts many approaches that consider dividing a big problem into several
subproblems.

Overall speaking, reinforcement learning starts with interactive and goal-seeking learning
agents that have explicit goals and have the ability to sense the environment. As agents
choose actions, the environment is influenced and agents may sense the environment
changes one step later.

Mahjong is a popular game especially among Asian areas. Reinforcement learning is an
effective method to train players to master strategies. And how our team implements it to
assist playing is introduced and further discussed in the part 7 Reinforcement Learning.

1.4 Overview
The EDD is divided into 6 sections with various subsections. The sections are:
1 Introduction
2 Glossary
3 Use cases
4 Design Overview
5 Data Design
6 Model Design
7 Reinforcement Learning
8 Results
9 Future Work



2. Glossary
Riichi: A player may declare ready if a player's hand needs only one tile to complete a
legal hand (tenpai)
Chow: three consecutive simple tiles of the same suit
Pong: three identical tiles
Kong: four identical tiles
Yaku: Yaku are specific combinations of tiles or conditions that yield the value of hands.
A winning hand consists of four melds requires at least one yaku.



3. Use Cases

3.1 Mahjong Beginners
A mahjong beginner would like to use Phoenix as a teacher. The Phoenix could either
participate in a real game or demonstrate a classical game. The Phoenix would interpret
why the move it chooses is the best move.

3.2 Mahjong challengers
A Mahjong challenger may like to test its mahjong level by challenging Phoenix with
different levels written in different algorithms.

3.3 Mahjong players substitute
In a friend game, maybe there are less than 4 friends. In this situation, players could
consider adding an agent as participants.



4. Design Overview

4.1 Introduction
In this part, we will introduce Suphx’s architecture and in our Alpha stage the main goal
is to reimplement Suphx. In our Beta stage we will introduce our advice to Suphx and
additional features.

4.2 Suphx System Architecture
The Suphx system is consist of the following components:

● supervised models
● winning model
● global reward predictor
● oracle agent
● policy decision flow

4.2.1 Supervised Models
Supervised models build a foundation for reinforcement learning, so that reinforcement
learning can be trained much faster. These supervised models are decomposed into 5
models.

● Discard model
○ Decide which tile to discard

● Chow model
○ Decide whether to take chow action

● Kong model
○ Decide whether to take kong action

● Pong model
○ Decide whether to take pong action

● Riichi model
○ Decide whether to take riichi action

4.2.2 Winning Model (Rule based)
The winning model of Suphx is based on the rule of mahjong. The system will check
whether the current round is the last round of the game or not.

● If this is not the last round of the game, Suffix will declare and win the round;
● If this is the last round of the game,

○ If after declaring a winning hand the accumulated round score of the
whole game is the lowest among the four players, do not declare;

○ Otherwise, declare and win the round



4.2.3 Global Reward Predictor (RNN based)
The reason why we need a Global Reward Predictor is that Mahjong is a multi-round
game. And the scores gained in each round are mostly determined by the initial hand. For
a professional player, he may choose to win more scores when he gets a good initial hand
while choosing to lose small scores to keep his current rank. In this case, we can’t judge
if a player is professional just by the score in one round.
The Global Reward Predictor would be implemented in a RNN-like structure such as
GRU, given scores of history rounds. The loss would be

We will choose Round score, dealer position, counters of repeat dealers, Riichi bets as
input features.

4.2.4 Oracle Agent
The method we use to train an agent for imperfect-information is to train the agent with
perfect information and gradually decay the “cheating information”. Finally the agent
would be trained only with imperfect information.

4.2.5 Policy Decision Models
We will train five separate decision models to aggregate our final policy decision. The
five models are Discard Model, Riichi Model, Chow Model, Pong Model, Kong Model.
Supervised learning would be applied with state as input and action as output. For
example, in the training of discard model, the input is all the observable information and
the output is the tile discarded in that state.

The training set would be expert room logs from Tenhou platform.



Fig. 1: Decision Flow



5 Data Design

5.1 Data Sources
Tenhou platform provided a well designed logging system, that will automatically log
each game in the XML format (Extensible markup language). Each player's actions and
table information are recorded as XML tags. In order to bootstrap the process of
supervised learning training, we scrape the logs bundle from the tenhou platform server.
Each file is bundled together by year from 2009 to current time. There are some earlier
logs as well from 2005, but the highest ranking table became available only after 2009.
Since we are looking for high quality games, the low ranking games are filtered and three
person mahjong is also removed for the simplicities. Here is the simple statistic of the
dataset. For some unknown reason the 2020 logs are missing in the tenhou platform. We
will skip them for now.

Table Ⅰ: Size of Raw Data

Raw XML log from Tenhou

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2021

51k 40k 464k 85k 71k 48k 46k 44k 30k 36k 46k 1332

Now, we have all these raw logs and ready to preprocess and extract features from them.

5.2 Data Preprocessing

5.2.1 Data for Supervised Learning
In order to generate training data for supervised learning, we need to provide data from
the perspective of each player that leads into their decisions. Since raw data are bundles
of log files for each game with table information and player operations, we need to
initialize a state at the beginning of the game and append changes to it.

Firstly, we will use the log parser to resolve data from logs, and extract features from it.
We extracted features for the Discard Model, Riichi Model, Chow Model, Pong Model,
and Kong Model. In this step, we generate a 2d vector for each state as the input of a
supervised learning neural network. The detailed format will be shown as below.

The most challenging part is how to find a suitable format to save our file. At the
beginning, we have tried to store all the data in Python dataframe. Although it is
workable on small size csv files (such as 2021.csv), it becomes time consuming and huge
memory consumption. we quickly turn to storing them in hdf5 format. In this way, we
presistiting our data into the disk to relieve the memory burden. However, there are some
drawbacks to storing data into the hdf5 dataset. We need to keep the data shape in the



same shape in which it will consume more disk space. Same apply to npy files. After
trying multiple types, finally we decided to use json as our output file, which also
supports persisting data to disk, and could speed up the processing time by appending
processed data at the end of file.

In this part, we also made an effort to remove three-player log, and fixed logs with
duplicate nodes.

5.2.2 Data for Real-time Gaming
When inference the model in real-time gaming at tenhou platform, data are collected
from instances of Player class. Since real-time package analysing and state storing is
already handled by the tenhou platform, all we need to do is to find the right location of
data that we need, including all kinds of player tiles and board information. Fortunately,
detailed tile information can be found in player.tiles, player.meld_tiles and
player.discards, while other board information can be found in player.table, which is an
instance of Table class.

5.3 Data Format

5.3.1 States Format
We have different data formats in different models. The following are the data formats for
the Discard Model and Riichi_Chow_Pong _Kong Model.

Discard Model:
Each json represents a state, which includes the tile the player drawed, player’s current
hands, tiles discarded by four players, four players’ open hands, as well as the tile the
player decided to discard based on the previous features.

The example is shown here:
{ 'draw_tile': 8,
'hands': [95, 110, 50, 117, 1, 108, 71, 127, 68, 51, 15, 122, 44, 8],
'discarded_tiles_pool': [],
'four_players_open_hands': [[], [], [], []],
'discarded_tile': 8}

Riichi_Chow_Pong _Kong Model:
Each json represents a state, which includes all the information shown currently, and the
decision that the player finally made based on the previous information.

The example is shown here:
{'player_id': 2,
'dealer': 3,
'repeat_dealer': 0,
'riichi_bets': 0,



'player_wind': 'S',
'prevailing_wind': 'E',
'player_tiles':

{'closed_hand:': [18, 86, 50, 55, 84, 22, 57],
'open_hand': [125, 127, 124, 28, 21, 24],
'discarded_tiles': [123, 117, 74, 131, 133, 64, 7, 89, 33, 45, 128, 65, 119]},

'open_hands_detail':
[{'tiles': [125, 127, 124], 'meld_type': 'Pon', 'reacted_tile': 124},
{'tiles': [28, 21, 24], 'meld_type': 'Chi', 'reacted_tile': 28}]
{'tiles': [4, 5, 6, 7], 'meld_type': 'AnKan', 'reacted_tile': None}
{'tiles': [114, 112, 113, 115], 'meld_type': 'MinKan', 'reacted_tile': 114}

{'tiles': [67, 64, 66, 65], 'meld_type': 'KaKan', 'reacted_tile': 65}
'enemies_tiles':

[{'enemy_seat': 0,
'closed_hand:': [62, 83, 98, 63, 12, 79, 92, 54, 27, 97, 72, 61, 105],
'open_hand': [], 'discarded_tiles': [1, 120, 130, 129, 37, 118, 30, 29, 71, 46, 108,

32, 36]},
{'enemy_seat': 1,
'closed_hand:': [99, 78, 85, 103, 67, 58, 77, 90, 104, 60, 16, 13, 9],
'open_hand': [], 'discarded_tiles': [114, 73, 100, 38, 6, 28, 34, 116, 48, 26, 44,

113, 75]},
{'enemy_seat': 3, 'closed_hand:': [43, 87, 40, 88, 59, 19, 42, 17, 80, 94, 53, 109,

81],
'open_hand': [], 'discarded_tiles': [69, 121, 124, 31, 102, 70, 10, 122, 68, 106,

126, 111, 41, 110]}],
'dora': [47],
'scores': [24800, 27800, 22400, 25000],
'last_player_discarded_tile': 8,
'could_chi': 0,
'could_pon': 0,
'could_minkan': 0,
'is_FCH': 0,
'action': ['DRAW', 35]
}

5.3.2 Extracted Feature Format
General feature is a (34*x) vector include information such as player tiles(34*12),
enemies tiles(34*12 for each one of three enemies), dora(34*5), current scores(34*4),
and other basic board information(34*5) like the dealer and wind. Features for player tile
and enemy tile have the same structure, they all include the information of closed hand,
opened hand and discarded tiles. Each group of tiles is represented as a (34*4) vector,
since there are 34 kinds of tiles with 4 replicas of each. Element in the vector is set to 1 if
the corresponding tile is in the group, else remain 0. Dora feature is set to be at a size of
(34*5) is because there are at most 5 dora indicators, and they are also from these 34
kinds of tiles. There are four players in total so the current scores feature is designed to be
(34*4), each column represents one player’s score. Score that is larger than 50000 is



truncated to 50000, and score from 0 to 50000 is linearly represented by 1s in that
column. Other board information like dealer seat, player seat, repeat dealer, riichi bets,
player wind and prevailing wind are all represented by a (34*1) column in a similar way.

Apart from the General feature, each model has its own individual extra feature, for
example, meld to Chi is an individual feature important to Chi feature generator, like
meld to Pon for Pon feature generator and meld to Kan & Kan type for Kan feature
generator. Thus the final feature will be individual feature concatenate to general feature.

We planned to add more features like look-ahead features in General features.
Look-ahead feature is designed to be a combination of shanten, safe tile and the
possibility to win a large amount of scores. The possibility is calculated by DFS
searching all possible discards and draws, which will cost seconds when the number of
replaced tiles reach three or more. However, time is limited for us to make decisions, thus
this latency is not allowed.We tried several kinds of methods to shrink the time
consuming but all failed to limit it to a practical range. Thus we finally decided not to add
this feature into our initial version and this might be a part of future work.



6. Supervised Model Design
In mahjong there are few actions needed when playing. In the online setting, the actions
are simplified. There are only five main actions players need to take, thus we designed
these models below using supervised learning to gain the knowledge from high ranking
human players.

6.1 Discard Model
Discard is one of the most common actions in the mahjong world and yet the most
complicated model among others. There are many factors that will change the probability
to win this game. Other players are able to make an action based on your discard tile, so
it’s important to not discard the tile that’s needed for other players.

Adapted from the classic computer vision image CNN model, one of the most
fundamental models of the deep learning field. We already know that the whole mahjong
set is 136 and 4 same tiles for each kind of tile, so we have 0 to 34 columns as the unique
type of tiles and 0 to 4 rows for each of the same kind of tiles. In the typical image
processing, image has length, width and color channels and feeds into the CNN model. In
our case, we have columns representing width and rows representing length. For
channels, we set it to one in order to use the convolutional layer in the CNN. Our discard
model takes the ideas from the well known ResNet architecture and in fact the rest of
models are using the similar architecture as well. We first have our input features stack
together to form a 16 x 34 x 1 matrix. In the current states, we only use 4 types of
features and in the future, we will use some look ahead features to push the performance
a little more. Three layers of convolutional layers with filter size 256 and kernel size 3x1
are applied to the input features. In the next step, we will introduce the residual block   In
ResNet, there are many deep convolutional layers, a classic example is ResNet 50,  which
used 50 blocks of residual blocks. The residual block is used to make a shortcut to each
layer, so that the information can be passed from the first layer to the last layer with less
effort and perversely. In deep neural networks, information propagated through each layer
is difficult and slow. With the residual block, this is no longer a problem.  In our setting,
we only repeat the block 5 times for the sake of speed. Later, we will do hyperparameter
tuning to find out the optimal repetition needed for this model. After the residual blocks,
we apply one additional convolutional layer and flatten the output to 1 dimensional array.
At this time, all we need to do is to apply a dense layer with softmax activation function
to distribute the probabilities to 34 classes.

Fig. 2: Workflow of Midterm Discard Model



6.2 Riichi, Chow, Pong, and Kong Model (RCPK)
Riichi, Chow, Pong, and Kong model, RCPK model for short share the same network
architectures due to the nature of binary actions. Users only need to decide whether or not
to perform this action. Of course, the rule is more complex than just making a decision,
but for now, we will keep it simple here. Each model has different kinds of features, but
no matter what kind of model is, they are all in the D x34x1 form, where the D is the
feature stack dimension depending on the model. Similar to the discard model, we used
the 3 layer of convolutional layers and 5 repeated residual blocks. At this point,
everything is identical to the discard model, but next instead of one layer convolution
layer, three layers are used. Flatten apply to the output and go though the 1024 fully
connected layer and another 256 fully connected layer. Finally, distribute the
probabilities to binary classes.

Fig. 3: Workflow of Midterm Riichi Model, Chow Model, Pong Model, and Kong Model

The previous architecture of supervised models suffers from slow training with our
dataset. For this reason, we decide to investigate the other type of implementation for our
task. We found DenseNet architectures have a more compact form of feature extraction
and are smaller in terms of parameter size and model size.  The main building blocks of
DenseNet are the dense blocks. Each block consists of one Convolutional layer with
kernel size 1 x 1 and another convolutional layer with 3x3 kernel size. The difference
between each block is the number of such pairs in the block. In our case, we used in total
201 layers. First block has the 6 such pairs, the second block with 12 pairs, the third
block has 48 pairs, and the last block with 32 pairs. After each block, there are one more
1x1 convolutional layer and one 2x2 average pooling layer. Note that instead of
performing the skip connection in ResNet, every layer in the block directly connects to
all subsequent layers. At the end, we added 2 more dense layers to smooth down the
distribution and softmax activation function to distribute the probabilities to 34 classes
for Discard model and binary classes for Chi, Pon, Kan, and Riichi model. Since discard
and other models have different numbers of classes and also evaluate differently.



Fig. 4: Workflow of Post Midterm Model

7 Reinforcement Learning

7.1 Reinforcement Learning Algorithms
When we consider choosing RL algorithms, there are two constraints. The first point is,
compared to common games which give instant reward for each step, mahjong is more
similar to board game Go. You could only get feedback after completing each round. The
second point is that, in mahjong it is hard to build a network to estimate the Q-value of
the current board situation. Unlike Go, the advantage and disadvantage didn’t show on
board. Player should decide on attack or defend based on the quality of his own hands as
well as deduce what would be a dangerous tile based on others’ discarded tiles. Based on
these two considerations, we choose policy gradient as our RL algorithms.

As mentioned before, we can not get instant feedback in each timestep. We will use
processed round results (will mention below) as Advantage.

7.2 Global Reward Predictor
We could get round scores after each round. However, as we mentioned above, the gains
and loss of score in each round didn’t absolutely mean good or bad feedback for your
policy. Take a simple example, you start with a bad initial hand so you take a
conservative method and avoid to lose more scores by ‘Ron’. Finally you lose a little
points because others made a ‘Tsumo’. In another round, you have a good initial hand
and take an aggressive method. You won a lot of scores in this round and finally got rank
1. In this example, we should give positive signals for both rounds. That’s why we need a
global reward predictor. The global reward predictor is used for generating a round
reward given round history. Below is the structure of the global reward predictor.



Fig. 5: Workflow of Rewards Predictor Model

The following features are used
● Dan (ranks of players)
● Dealer
● Repeat dealer number
● Riichi bets number
● Round initialization score and gains

The reason why we add dan is that the points gained for different rankings are influenced
by players’ dans.



Fig. 5: Points Gained by Different Rankings and Dans

The Global Reward Predictor is trained by minimize the following mean square error:
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7.3 Reinforcement Learning Pipeline

Fig. 6: Reinforcement Learning Pipeline

We use Tenhou Client to connect with Tenhou Platform. The client will receive and send
packet messages to communicate with Tenhou Platform. Every time when a decision
should be made (like if we should chi and how to chi), the client will request deep models
built inside it with board states. The action will be returned to Tenhou Platform for
continuing the game. Besides, an experience collector will record every decision of our
deep models as well as board states, predicted probability distributions. After each round,
the global reward predictor will give a reward which is appended to each sample. The
tuple (features, old_pred, actions, reward) will be sent to our trainer. The trainer will take
a PPO loss and finetune the deep models.

7.4 Distributed Reinforcement Learning

Fig. 7: Distributed Reinforcement Learning Pipeline



We used the Ray framework developed by RISE Lib to build our distributed training
pipeline. There are five components.

● Replay Buffer (distributed): Store experiences.
● Parameter Server (distributed): Store most updated model weights.
● Actor (distributed): Self-play or play with real users, responsible for collecting

experiences.
● Learner (centralized): Pull samples from cache, train and push weights to cache.
● Cache (centralized): Built inside Learner, use multiprocessing to communicate

with replay buffer and parameter server. There are two multiprocessing queues
inside cache. The first is to store samples, the second is to store model weights.

As we can see, there are 6 main paths in our distributed pipeline.
Step 1. Actors which are connected to Tenhou Platform keep running and send
experiences to Replay Buffer on the same node.
Step 2 & 5. Cache ran as a children process to fetch training samples in all replay buffers
as well as broadcasting weights to all Parameter Server.
Step 3 & 4. Learner will randomly sample from cache and train a batch. After some
training, Learner will push its weights to cache.
Step 6. Actors will periodically check parameter servers, update its parameters and
continue playing.

The reason why we need a cache is that we have to use ray.get to wait for results of
remote function. Typically we will use ray.remote to start a remote task and ray will
arrange the remote task execution. If we need the return value of a remote function, we
should use ray.get. However ray.get is too slow for learners to get training samples. A
child process which is the cache is introduced here to communicate with all replay
buffers and parameter servers while Learner is training. This solution speed up the
Learner.

8 Results

8.1 Connection with Platforms

8.1.1 Google Cloud Platform

8.1.1.1 Preprocessing using Dataflow
Processing such a huge dataset locally is infeasible. Since Google Cloud Platform(GCP)
offers $300 free credits for all new users, we have decided to use GCP to do
preprocessing and training. In order to work on these dataset more efficiently, we move
all our dataset from local storage to the google cloud storage bucket, this will
significantly speed up the disk I/O and lower the network latency for other GCP services.



Utilizing the preprocessing logic from the section 5.2, we employ an apache beam
pipeline to speedup and scale for processing our dataset. Apache beam is a unified
programming model to define and execute data processing pipelines, including extract,
transform, and load(ETL), batch and stream (continuous) processing. Beam can easily do
distributed processing on the fly and the GCP dataflow services use apache beam as the
main backbone.

In the preprocessing stage, the input of the pipeline is directly sourced from the google
storage bucket. Logic in the pipeline is defined by one unit, meaning that every operation
logic is done by one unit. Only one row of data is processed at a time. This is for the
purpose of multithreading and multi workers distribute processing. Since each row in a
csv file is a game log, we read the csv files line by line. In the next step of the pipeline,
we convert the raw text to csv row data and only the log column is extracted. The
extracted column consists of only one log in the raw xml format. We need to parse the
xml format to an easy to manage format. This is done in the section 5.2. After getting the
result from 5.2 in dictionary form, we transform it to the shape of (D,34,1), the first
dimension is determined by different features in different models. Filtering out some of
the invalid data points, we split it into train and validation datasets for later training.
These datasets are saved into the TFRecord files in the bucket, we will use them to load
our dataset into tensorflow training. At the point, we have concluded the process of
preprocessing, all the relevant files are generated and ready to begin the training process.

Fig. 11: Workflow of Preprocessing and Training on GCP

8.1.1.2 Distribute training using mirrored strategy
Training on a single GPU is slow and impractical. In order to expedite the process, we
utilized the MirroredStrategy provided by the tensorflow api. MirroredStrategy is a
synchronous training strategy that works in a single machine with multiple GPUs. In
GCP, we are allowed to attach some amount of GPUs to our master server, so we can
distribute training with multiple GPUs. The idea of MirroredStrategy is to make a copy of



the model variable to all the processors, then it will combine the gradients all together
and apply to all copies of processors. Since keras is the higher level API for tensorflow,
we can easily use it for our code. All we need to do is to add the appropriate scope to our
model and it will do the rest for us. In our experiment, we used a master server with
n1-highmem-8 which has 8 vCPU and about 7 GB memory per vCPU. We attached 4
Nvidia T4 GPUs to our master server for our training task. With the help of multi GPUs,
we are able to quickly train our RCPK model in a few hours. These models have smaller
datasets compared to discard models due to the constraints to call these actions and
discard is performed more often. On the other side, the Discard model is much slower
compared to RCPK models and more difficult to get great performance out of the box. In
the later phase, we will possibly use Multiworker mirrored strategy to do the
hyperparameter tuning which allows us to scale up horizontally by adding more machines
with multiple GPUs.

8.1.2 Tenhou Platform
Few days before the mid term, we are able to connect everything in tenhou bot with our
supervised models. Now, our agent will perform chow, pong, kang, riichi, and discard
action on the tenhou platform with human players. Our agent collects features from
known information in the table as the game progresses and transforms them into the
single feature row similar to our training dataset. This feature is used by models to make
predictions. In discard, the prediction will give us the distributions of probabilities of
each class. Argmax applied to find out which one has the highest probability and this
number will be mapped to the unique tiles. We tell the tenhou client the tile we want to
discard and a websocket message sends to the server and updates accordingly. The other
models have the similar mechanism , the difference is that we need to first manual check
the condition for valid action. In other words, some rules need to be checked before we
ask the model to make an action. Models only make predictions when they meet all the
requirements. Below is an example run against 3 human players. phx527 is our agent bot.
Our current supervised models can achieve 2nd place. In this game, our agent plays
defensively. Agent don’t throw out any existing meld in hands and cautiously discard the
tile that can’t be used against self.



Fig. 12: Example run with 3 human players1

8.2 Training Results
In this section, we will talk about the training results we have for various models. In our
current stage of development, only supervised models finished the training, hence, only
those models have training data.

8.2.1 Supervised Model
As the foundation of our mahjong system, we want these supervised models to have some
comparable level of skills to human players, so we can continue to improve using the
reinforcement learning techniques later.

8.2.1.1 Discard Model
Since the number of unique tiles in mahjong is 34, our discard model is modeled as a 34
classes classification problem.  Below is the training categorical accuracy of each class in
every batch. As you can see here, we are achieving consistent results with about 60%
accuracy on each class. compared to the performance from Suphx[5], we still have some
work to do, but we are very close to what they have for this model.

1 Replay log - http://tenhou.net/0/?log=2021031703gm-0001-0000-12b0e05d&tw=2



Fig. 13: Midterm Categorical Accuracy(left) and Loss(right) of Discard model

8.2.1.2 RCPK Models
RCPK models share similarities in terms of structures and tasks. They are all doing
binary classification.  For the sake of simplicity, some of the actions are rule based. Since
they are binary, we are expecting much higher results from them. In the following graphs,
these models indeed achieve some promising results. Although the loss looks strange, the
problem might be the learning rate is too large at the beginning. These models still
require some extensive training in order to reach their optimal performance.

Fig. 14: Binary Accuracy(left) and Loss(right) of Kan model



Fig. 15: Binary Accuracy(left) and Loss(right) of Riichi model
Since we changed our model architectures after midterm, here are the results for the new
architectures.

Fig. 16: Categorical Accuracy(left), AUC(center), and Loss(right) of Discard model

Fig. 17: Binary Accuracy(left), AUC(center) and Loss(right) of RCPK model

9 Future Work
We will continue to work on the following sections:

● Evaluate performance by stable rank.
● Implement the oracle guiding to speed up the training.
● Deploy to a larger cluster.
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